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FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS

By A. F. ZXHM

PREFACE

In this te.xt are given the pressure distrihution and resistance found by theory and experi-

ment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid.

Tim experimental values pertain to air and some liquids, especially water; the theoretical refer

sometimes to perfect, again to viscid fluids. For the cases treated the concordance of theory

and measurenmnt is so close as to inake a rdsum_ of results desirable. Incidentally formulas

for the velocity at all points of the flow field are given, some being new forms for ready use

derived in a previous paper and given in Tables I, III. A summary is given on page 536.

The cmnputations amt diagrams were made by Mr. F. A. Louden. The present text is a

slightly revised and extended form of Report No. 312, prepared by the writer for the Bureau of

Aeronautics in June, 1926, and by it released for publication by the National Advisory Com-

mittee for Aeronautics. A list of symbols follows the text.

PRESSURE AND PRESSURE DRAG

We assume the fluid, of constant density and unaffected by weight or viscosity, to have in

all the distant tield a uniform velocity qo parallel to x; in the near field the resultant velocity q.

If now the distant pressure is everywhere po, and the pressure at any point in the disturbed flow

is po + p, the superstream pressttre p is given by Bernouilli's formula,

p/p,= 1 - q:/go', (1)

where p_ = pqo2/2, called the ""stop" or "stagnation" or "nose" pressure.

At any surface element the superpressure exerts the drag f p dy dz, whose integral over

any zone _ of the surface is the zonal pressure drag,

D = fp dy dz. (2)

Values of p, D are here derived for various solid forms and cmnpared with those found by

experiment.
PRESSURE MEASUREMENTS

The measured pressures here plotted were obtained from some tests by Mr. R. H. Smith

and myself in the United States Navy 8-foot wind tunnel at 40 miles an hour. Very accurate

models of brass, or faced with brass, had numerous fine perforations, one at the nose, others

further aft, which could be joined in pairs to a manometer through fine tubing. Thus the

pressure difference between the nose and each after hole could bc observed for any wind speed.

Then a fine tube with closed tip and static side holes was held along stream at many points

abreast of the model, to show the difference of pressure there and at the nose. Next the tube

was thrust right through the model, to find the static pressure before and behind it. The

method is too well known to require further description.

THE SPHERE

Assume as the tlxed body a sphere, of radius a, in a uniform stream of inviscid liquid, as

shown in Table I. Then by that table the flow speeds at points on the axis x, y and on the
surface are

q_= (1 -aa/xa:q_, qv= (1 +aa/2ya',q_, q,= 1.Sq_ sin 0, (3)

where 0 is the polar angle. Figure 1 shows plots of these equations.

I A zone is a part of the surface bounded by two planes normal to qo. Usually one plane is assumed tangent to the surface at its upstream end.
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To graph p/p,, in Figure 1, we subtract from the line y= 1, first q_2/_o_ to show the pressure

alongx; then qt2/qo _ to portray the surface pressure. A similar procedure gives the superpressure

in the equatorial plane.
The little circles show the actual superpressures found with a 2-inch brass sphere in a tunnel

wind at 40 miles an hour. These agree well with the computed pressures except where or

near where the flow is naturally turbulent.

By (3) and (1), on the sphere's surface p/p,,= 1-2.25 sin20; hence the zonal pressure drag

f p.2_rydg is
9

D = _ra_sin_0(1 - 8 sin_0)p,, (4)

for a nose cap whose polar angle is 0. With increase of 0, as in Figure 2, Dip, increases to a
maximum .698 a _ for 0=41°-50 ' and p=0; then decreases to zero for 0=70°-37'; then to its

minimum-.3927 a_ for 0=_r/2; then continues aft of tile equator symmetrical with its fore

part. Thus the drag is decidedly upstream on the front half and equally downstream on the

s ._._
"*.(a

},._
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-- q/qo --_

/

' I '1 ' _ 0o_ ' i ' U
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FIG.t.--Veloeity and pr!'_sure along axes and over surface of sphere; graphs indicale theoretical values:

circles indicate pressures measured at 40 miles per hour ill S-lo_t wind tunnel, United Stales Navy

rear half, having zero resultant. The little crosses, giving D/p, for the measured pressures,

show that the total prcssurc drag in air is downstream, and fairly large for a body so blunt as

the sphere.

Figure 3 depicts the whole-drag coefficient _ Co-2D/_r p a2qo_, of a sphere, for the manifold

experimental conditions specified in the diagram, plotted against Reynolds Number R = 2 qoa/v,

r being the kinematic viscosity. For 0.2 < R< 20(}000, the data lie close to the line.

(7.9 = 28R -s_ + .48, (5)

an empirical formula devised by the writer as an approximation.

For .5<R<2 (5) fairly merges with 0seen's f_rmula

Co = 24R -_ +4.5, (6)

auJ for R< .2 Stokes' equation Co = 24/R is exactly verified. Both these formulas are theoretical.

Stokes treated only viscous resistance at small scale; 0seen added to Stokes' drag coefficient,

24/R, the term 4.5 due to inertia.

t From the drag D- Ct), S. where S is the meter's frontal area. (me dertx es tile drug c_fiti.nt ('l, = D'p, S
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Over an important R range Figure 3 shows Cv = .5,giving as the sphere's whole drag

D = .5 p, S, (7)

where S =,r a 2 is the frontal area. That is, the sphere's drag equals half its nose pressure times

its frontal area. For R<.2 Stokes' value, D=6,r u a q_, has been exactly verified experi-

mentally, as is well known.

Y
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Fir,. 2.--Pressure and pressure-drag on sphere. Graphs indicate

theoretical vMues; circles indicate pressure p/p, measured at

40 mi]es per hour; crosses indicate pre_ure-drag D/p,, com.

puted from measured pre_sln'e

THE ROUND CYLINDER

Next asoume an endless circular cylinder, of radius a, fixed transverse to the stream, as

indicated in Table I. By that table the flow speed at points on the axes x, y and on the surface is

qx= ( l -a2/x2) qo, qv= (l +a2/y ') qo, qt= 2 q0sin 8, (8)

where 0 is the polar angle. Plots of (8) are shown in Figure 4.

Graphs of p/p,,, made as explained for the sphere, are also given there, together with experi-

mental values, marked by small circles, for an endless 2-inch cylinder in a tunnel wind at 40

miles an hour. The agreement is good for points well within the smooth-flow region.

On the surface p/p,,=l-4 sin 2 0. The integral 2 .ffpdy gives, per unit length of

cylinder, the zonal pressure-drag formula, °

D/p,, - 2 a sin 0- _ a sin _ O. (9)
o

4248,q---27--34
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Fm 5.--Pr_ure and pre_urc-drag on endless

cylinder. Graphs indicgte theoreticgl values;

circle6 indicate pressure pip, measured at 4'1

miles per hour; crosses iadicute pressure-dr_g

DIp, computed from measured pressure
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This is 0, 2a/3 (max.), 0, --2a/3, for 8 = 0% 30% 60% 90°; and is symmetrical about the equatorial

plane x = 0. In Figure 5, the little crosses give D/p,, for the measured pressures, and show total

D/p,, = 2.33a.

Figure 6 delineates the drag coefficient CD plotted against R = 2 aq_/r, from Wieselsberger's

(Reference I) wind tunnel tests of nine endless cylinders held transverse to the steady flow.
The faired line is the graph of

CD = 9.4R-'8 + 1.2, (10)

an empirical equation devised by the present writer.

For very low values of R, Lamb derives the formula

8
c. = ,_ -T,,.., (11)

l ogt lx )-Ix

whose graph in Figure 6 Dearly merges with (10) at R =.3.

For 15000< R< 200000, Figure 6 gives CD = 1.2; hence the drag per unit frontal area is

D = 1.2p,, (12)

which is 2.4 times that for the sphere, given by (7).

THE ELLIPTIC CYLINDER

An endless elliptic cylinder held transverse to the stream, as shown in Table I, gives for

points on x, y and on its surface,

q_ = (1 - n)qo, q_ = (1 + m)qo, qt = (I + b/a)qo sin 0, (13)

where m, n are as in Table I. Amidships q,= (1 +b/a)qo=2qo for a =b, as given by (8). Graphs

of (13) are given in Figure 7.

To find a', b' for plotting (13), assume a' and with it as radius strike about the focus an

arc cutting y. The cutting point is distant b' from the origin. Otherwise, b' = _/a':- c2, where

c_= a2- b_= const.

With a/b = 4 one plots p/p,, in Figure 7, as explained for the sphere. The circles give the

experimental p/p, for an endless 2-inch by 8-inch strut, at zero pitch and yaw, in a tunnel wind at

40 miles an hour. The theoretical and measured pressures agree nicely for all points before,

abreast, and well behind the cylinder.

Again, sin20=a_y2/(b4+cTf), if c_=a2-b _. Hence on the model

(a+b)_y _.
P/P,=l-qt2/qo 2=1- b4+c2y2

(14)

This gives the zonal pressure drag, D = 2fYpdy, pe'r unit length of cylinder, oz
o

r ..a+b __.2(a+b) 2. __cy
Dip =2y_2(a+b)2 j. y_ dy

- =-Do cZ y±zo c3 Lan b2.o b' + c:y 2
(1 5)
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whose graph, for a/b = 4, appears in Figure 8.

p=0, then falls to its minimum amidships.

FLOW AND DRAG FOR1MULAS FOR SISIPLE QUADRICS

It rises from 0 at the nose to its maximum where

e I
I

Wind _ _--""J Lenq;_h ;n /_ches
FIG. 7.--Velocit y and pre_ure along axes and over sur face of endless elliptic cylinder. O raphs indicate theoretical valut._;

_.ircles indicate pressure measured nt 40 n.iles per hour in 8-foot wind tunnel, Uniled State_ Navy
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FIe,. 8.--Pressure and pressure-drag on endles._ elliptic cylinder. Graphs indicate theoretical values; circles

indicate pressure pip, measured at 40 miles per hour; crc_se_ indicate pressure-drag D/IJ, computed from

measured pressure

Whatever the value of a/b, the whole pressure on the front half is negative or upstream,

as for the sphere and round cylinder, and is balanced by the rear drag. For b fixed it decreases

indefinitely with b/a.

181



REPORT NATIONAL ADVISORY COMMITTEE FOP, AERONAUTICS

The crosses marking actual values of D/p, found in said test show a downstream resultant

D. In fact, it is one-third the whole measured drag of pressure plus friction, or one-half the

friction drag.

For tile cylinder held broadside on, b >(;/ and a _- b"_ --c:, hence changing c _ to -c _ under

the integral sign of (15), we find

+by b_(a+b')2'ca lOg, b_ cy,be4-C_l (16)D/p,= -4bac: -

where now c -_- b:- ft2. With b fixed, the upstream pressure drag on the frtmt half increases with

b/a, becoming infinite for a thin fiat plate. It is balanced by a symmetrical drag back of the

plate.
Such infinite forces imply infinite pressure change at the edges where, as is well known, the

velocity can be q = _:'2p_/p = _, in a perfect liquid whose reservoir pressure is p_ = :_. Otherwise

viewed, the pressure is p, at the plate's center (front and back) and decreases indefinitely toward

the edges, thus exerting an infinite upstream push on the back and a symmetrical downstream

push on the front. In natural tluids no such condition can exist.

THE PROLATE SPHEROID

A prolate spheroid, fixed as in Table I, gives for points on x, y and the solid surface, respec-

tively, the flow speeds

q_=(l-n)qo, q_=(l+m)q_, qt= (l+k,) q0sin 0, (16)

14_'" I

- - - 3.=-_.7_- - _ -- _ _ :._= :___ _

-JO -,9 -6 _ -4 4 G 8 /O

W,'od _ .Leng/h /'o /nch¢$

FI(;, 9.--Velocity and l)ressure along axes :rod over surf_.ce of prolate spheroid. Graphs indicate theoretical values; eireh,s

indicate pressures Ttleastlrt.d at 40 nliles per hour in S-foot Willd IIllltlel, United States Navy; dots give pressures [,)tln,l

with _n equal model in ]3ritish test, R. and _I, No. 600, British A( v sorv ColllmiLtce for Aeronautics

t.
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FIG IlL--Pressure and pressure-drag on prolate spheroid. Graphs indicate theoretical values; dots indicate

measured pressure p_'p. from l'igtlre 9; erosse_ indicate pressure-drag D'p. computed [folIl me_ul'_d pressure
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where ]_'_is to be taken from Table II. Graphs of (16) are given in Figure 9, for a model having

a/b=4, viz.,/c_- 0.082.

For this surface p/p, plots as in Figure 10. For a 2 by 8 inch brass nlode] values of p/p_

are shown by circles for a test at 40 miles an hour in the United States Navy tunnel ; by dots for

a like test in a British tunnel. (Reference 2.)

By (16), for points on the surface p/p_= 1-qt2/qo 2= 1- (l÷k,) 2 sin: 0. From this, since

sin 2 6 = a2f/(b 4+ c2y2), tile zonal pressure drag f p. 2 :r y dy is found. Thus

D/p, =zry2_ ra: (1 +k_) _ f+ _ra2b4 b4+dY2
c: - c_ (l+k_): Iog. b4 (17)

Starting from y=0, D/p= increases to its maximmn when p=O, or sin 0=l/(l+k_); then

diminishes to its minimum for y = b. Figure 10 gives the theoretical and empirical graphs of

D/p= for a/b = 4.

For b tixed the upstream drag on the front half decreases indefinitely with b/a, becoming

zero for infinite elongation.
OBLATE SPHEROID

The flow velocity vbout an oblate spheroid with its polar axis along stream is given by

formulas in Table I, and plotted in Figure 11, together with computed values of p:p_. No

determinations ot p or D were made for an actual flow. Ttle formula for D/p_ is like (17),

except that c 2= b2-(F, and ]_'_is largex for the oblate spheroid, as seen in Table I]. For b tixed

tile upstream drag on tile front half increases indefinitely with b/a.

I ' I ' I 'ILl' i ' _ ' l ' I ' ' '

U
Ft_. ]1. Tllel_retie:d _uh±_Zy ::1 J pr:_.;ur,: _A_:lg x :z._is of obktte spb_,roid. Dimneter/thicknes._=_

CIRCULAR DISK

The theoretical flow speeds and superpressures for points on the axis of a circular disk fixed

normal to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative

data from a test. One notes that the formulas are those for an oblate spheroid with eccen-

tricity e = 1.

For 1500<qo a/v <500000, Wieselsberger (Reference 3) finds for the air drag of a thin

normal disk, of area S,

D = 1A p.S, (lS)

or 2.2 times that for a sphere. For aqo/v extremely small, theory gives

D=5.1 7: # a qo, (19)

as is well known. Test data for a complete graph, including these extremes, are not yet available.

_"=_--_F-Z.--s---7_ ...._.--_--_

I_ 1_,/d,, Ii \

VI/'/md

£'v; 12. -Theoretical pressure aTId velocity along axis of disk
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REGIONS OF EQUAL SPEED

In the flow field q, p are constant where q,2+q,2=constant, viz. where

q_/q2 = (1 + m) 2 sin20 + (1 - n) 2 cos20 = const.

In particular for the region q = qo, this becomes

2 rt 2- n a r4

tan 0= m 2 ÷m=b a tan2_*

(20)

(21)

/.2

\

/,0

°.8

_ t. 0.5

kJ,

.e_
< ._ 04

kl

_0_

, , I ' o_/,:,t_p_.o,a, _'=b,',_-L."i ] ,

\ i 6-o/ I .

L I t 1 i ,-7-'-T'- i" I i ! I t , ,o
2 3 4 5- 6 7 8 9 I0

EtongohOn, E

Ft6. 13.--Inertia coefficient _"_.elongation. Plottx-d from Table II

which applies to all the quadrics in Table I. Clearly tan 0=0 for n=2; tan20=n/m for

m, n = 0, viz. for all distant points of (21). For these points the normal to any confocal ellipse

ties along the radius vector and asymptote of (21), as seen in Figures 14 fo 17.

FIG. 14.--Lines of steady flow, lines of constant speed anti pressure, for
infinite frictionlees liquid streaming lm._t a sphere

For the sphere n=2m=a3/r3; hence (21) becomes

2r_ ;-- a a
tan_0 = 2 2r _ _ .5a_ ('22)

where r = a' = -_/x_+ y_. The form of this is depicted in Figure 14.

• tan _ =y/x is the slope of a radial line through the point (x, y) where (21) cuts a confocM curve a'W, of Table I. Knowing a', b', B, to locate

(z, y) draw acro_ tilt, radial line an are of a'W by sliding along the x, y axes a straightedge suhdivided as in the elliosograph. The operation is rapid,
and easy.
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For a round cylinder n = m = a2/r2; hence

2 _ 2r2- a_
tan 8-2r_+a_ or, 2r2=a 2 sec 28,

which is the section of a hyperbolic cylinder, as in Figure 15.

,/

) / q/qo= 1

Fro. 15.--Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid streaming across endless

round cylinder

"\ .q# /

\ //
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\ /

\ //
\ /

\ /

\ /
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\ Y //

(23)
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/ \\, \
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/ \ ",

/ ,
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Fit;. 16.--Lines of steady flow, lines of constant speed and pressure, for infinite frictionless liquid

streaming across endle_ elliptic cylinder
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A plot of (21) for an elliptic cylinder, fixed as shown in Table I, is given in Figure 16; for a

prolate spheroid in Figure 17.

Besides the region (21), having q - qo, it is useful to know the limit of perceptible disturbance

say where q2tqJ = 1 ± .01. This in (20) gives

(1 + m) 2 sin 20 + (I - n)2 cos 2 (7= 1 ± .0 l, (24)

which applies to all tile quadrics here studied. Hence

tan2 0= n 2-n 0.014-- - )

m 2+m-m(2÷m) cos20

A graph of (25) for a round cylinder is shown in Figure 15.

(25)

Like plots for the other quadries

\

\
\

\ \

\ \

'\

\

'\

i ,/ \\ k

!7/ \,

]l \\
z/

/_//// /I i \

/ i \

// i \\\,

#/ ! <,\

1 , \\1 ,

/'

/

}'lO. 17.--Li.._ _f st.aJ) l_o,i, h.e_ ol consta0t speed and pressure, for infinite friction-

les._ liquid streanihll past a prolate spheroid, Full-line curve q =q. refers to stream

parallel to l: dotted curve qfq, refers Io stream inclined 10 ° to l

If in (20) a series of constants be written for the right member, the graphs compose a family

of lines of equal velocity and pressure, covering the entire flow field. Rotating Figures 14, 17

about x gives surfaces of q = qo.

COMPARISON OF SPEEDS

Before all the fixed models the flow speed is qo at a great distance and 0 at the nose; abreast

of them it is qo at a distance, and (1 + k_)qo amidships.

The flux of q-qo through the equatorial plane obviously must equal qoS where S is the

body's frontal area. Hence two bodies having equal equators have the same flux qoS, and the

same average superspeed or average q-qo. But the longer one has the lesser midship speed;
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SYMBOLS USED IN TEXT

x, y ....... Cartesian coordinates; also axes of same.

r, t_........ Polar coordinates.

a ......... Angle of attack of uniform stream.

s ......... Length of arc, increasing with t3.
0 ......... Inclination to x of normal to confocal

curves in Table I.

......... Velocity function.
_b......... Stream function.

q ......... Resultant velocity at any point of fluid.
q ......... Velocity of distant fluid (parallel to x

axis).

qz, qu ..... Velocity at points on x and y axes (parallel

to x axis).

q¢ ........ Velocity along confoeal surface or model
surface.

q ......... Velocity normal to confoeal surface.

......... Kinematic viscosity.
p, ........ Nose pressure=p q°Z/2.

p ......... Pressure in distant fluid.

p ......... Superstream pressure anywhere.

D ........ Zonal pressure drag=f p dy dz.

D ........ Whole drag.
S ........ Frontal area of model.

CD ....... Drag coefficient= Drp,S.

R ........ Reynolds number.
a ......... Radius of sphere, cylinder.

a, b ....... Semiaxes of ellipse.

a', b'. ..... Semiaxes of confocal ellipse.

e ........ Eccentricity of ellipse.

e' ........ Eccentricity of confoeal ellipse.

c ......... Focal distance = ae = a'e' = _/a"- -- b 2

k ......... Inertia factor (Table II).
p ......... Density of fluid, ra, n, m .... Quantities defined in Tables I, II.

......... Viscosity. , ......... Colatitude (see equation 30).

TABLE I

Flow functions for simple quadrics" fixed in a uniform stream of speed qo along x positive

] Value of functions at any confoeal surfaces of semiaxes a', b'
!

Symbol defini- Form of quadric ....... I--

tions Velocity function _ i Component velocities
i Stream function 4_ q, q,

--tl q-re' %x where ; i Diff;rentiation along

= ', J u , ¢=--2 (1-n)q°y2'where) arc s of either figure

a= I n aa ! gives:
m=6dT- _ = =a, _ b,,_ dx ....

- qt=ox ds=tX_ -m) qoSee diagram A

(fig. 20) ! / sin e, valid for all the

¢_ -- (1-{-m) q,x, ¢= -- (1- n) q.y, figures;

See diagram B

(fig. 20)

See diagram C

(fig. 20)

Sphere

Circular cylinder

Elliptic cylinder

Prolate spheroid

Oblate spheroid

Circular disk

a=O, e= 1

a _

m _a t_

_--(l+m) q,x,

b a+b

m=a' _,_÷b'

,,o= -- (1 q- m) q,x,

1We' . ,
log, 1-e _-ze

m=--: -1-t-e 2e

log° l±e--l_e2

¢= -- (1-t- rn) q,x,

e,b t

ar --sin -te_
m:

1

¢'_- 2 (l-n) q°Y*'

l + e' 2e'
log, l_e,--l_e,_

n= :- :t+_ -'_d--
tog, l.e--l_e_

q.=oO_u dY-=--(l--n)q°
a2 y aS

n=a,_ cos 0, for the cy]in- ;
ders;

- -- 1 O4, ay

¢_=--(l--n)qoy, q"=-Y _Y ds=-(1-n)
q0 cos O, for the axial

b aTb surfaces; viz.,sphere,
spheroids, disk.

n=b_ a'+b' For a', b'=a, b, Table

II gives m°; whence

q,=(l+m,)qo sin 0,
as the flow velocity on a

fixed quadrie surface.

q.= 5:0 for disk. since
n_l

Remark--both q_ q. :
can be derived from

either _ or ¢'.

If q_ q.=max, qj, q.

on a'b _, at any other

point thereof

q_=qf sin O, q.=q.
cos 0

¢/=_1 (1- n) qo_,

tar
e , --sin-ae'

--sin -_e n=
ha--st n -t e

_= -- (I q- m) q_x, ¢=-l(l--n) qoy2, !

(':-si,,-,e')n- )
T ----_ \b,z-sin It'

i

¢, _, in elliptic coordinates, can be found in textbooks; c. g., §§ 71,105,108, Lamb's Hydrodynamics, 4th Ed.
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hence its outboard speed wanes less rapidly with distance along y. A like relation obtains

along x from the nose forward. These relations are shown in the velocity graphs of Figures

18 and 19. A figure similar to 18, including many models, is given in Reference 4.

i

FIG. 18.--Superposed graphs of flow speed abreast of endless round and ellipli('

cylinders of same thickness fixed transverse to au infinite stream of inviscid

liquid. At great distance flow speed is q,

FIG. 19.--Super posed graphs of axial flow speed before three end ess cyl ! ders 1, 2, an I 3 (3 oscldating
2), each fixed transverse to an infinite stream of inviscid liquid. A t great distance flow sic!e,| is q_

COMPARISON OF PRESSURES

The foregoing speed relations determine those of the pressures. The nose pressures all

are p,=pqo2/2; the midship ones are p=p_-(l+lc_)_p_. The drag on the front half of the

model is upstream for all the quadrics here treated; it increases with the flatness, as one proves

by (15), (17), and is infinite for the normal disk and rectangle.

APPLICATION OF FORMULAS

The ready equations here given, aside from their academic interest in predicting natural

phenomena from pure theory, are found useful in the design of air and water craft. The formula

for nose pressure long has been used. That for pressure on a prolate spheroid, of form suitable

for an airship bow, is so trustworthy as to obviate the need for pressure-distribution measure-

ments on such shapes. The same may be said of the fore part of well-formed torpedoes deeply

submerged. The computations for stiffening the fore part of airship hulls can be safely based

on theoretical estimates of the local pressures. The velocity change, well away from the

model, especially forward of the eqnatorial plane, can be found more accurately by theory

than by experiment. The equation (21) of undisturbed speed shows where to place anemometers

to indicate, with least correction, the relative speed of nmdel and general stream.
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TABLE II

Inertia factors k°* for quadric surfaces in stead)' translation along axis a in Figure 20

Prelate spheroid E= a/b
Elliptic cylinder, E=a/b , l+e .. Oblate spheroid E=b/a

k =b k -- tog. i_.e-Ze eE_--E sin-le
°-- .... l+e 2e-- k,=-- e--Esin-Xe

° a log, l_.e--l,e2

1. 00
1.5o
2. 00
2. 50
3. O0
4. 00
5. 00
6. 00
7. 00
8. O0
9. 00

10. 00
co

ooo
667
500
400
333
250
200
167
143
125
111
10o
ooo

0. 500
305
209
157
121
082
059
045
036
029
024
1321
ooo

500
• 803

1. 118
1. 428
1. 742
2.379
3.000
3.642
4.279
4.915
5. 549
6. 183

* In this table k.=m. of Table I, viz, the value of m when a', b'=o, b. Lamb (R. and M. Na. 623, Brit. Adv. Cam. Aeron.) gives the numerit.al
values in the tMrd column abo_e. For mct'vn of elliptic cylinder along b axis inertia factor is k6=a/b.

D/Qqrom A _1 Dt'oqrom B y O/oqrom C _l

qo qx a' a qo qz a'a qo qx a' a

Fin. 20

VELOCITY AND PRESSURE IN OBLIQUE FLOW 2

PRINCIPLE OF VELOCITY COMPOSITION

A stream qo oblique to a model can be resolved in chosen directions into component streams

each having its individual velocity at any flow point, as in Figure 21. Combining the individuals

gives their resultant, whence p is found.

VELOCITY FUNCTION

Let a uniforln infinite stream qo of inviscid liquid flowing past a fixed ellipsoid centered

at the origin have components U, V, W along x, y, z, taken parallel, respectively, to the semi-

axes, a, b, c; then we find the velocity potential _ for qa as the sum of the potentials _,, _, _,
for U, V, W.

In the present notation textbooks prove, for any point (x, y, z) on the confocal ellipsoid

a t b _ c/,

¢.= - (1 +m.) Ux, (26)

and give as constant for that surface

m.=abc 1-abco_ a' _ b' c'] J_ a' _ b' c' (27)

the multiplier of being constant for the model, and X=a' _-aL Adding to (26) analogous

values of _, _, gives

= - (1 + m,) Ux- (1 + mb) Vy- (1 + m¢) We=- (1 + m)qoh, (28)

2 This brief treatment of oblique flaw was added by request after the preceding text was finished.

* Simple formulas for this integral and the earrespondiog b, ¢ ones, published by Greene, R. S. Ed. 1833, are given by Doctor Tuckerman in

Report Na 210 of the National Advisory Committee for Aeronautics for 1925. Same ready values are listed in Tables hi, IV.

189



REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where h is the distance of (x, y, z) from the plane _=0, and ma, rob, m,, m are generalized inertia

coefficients of a' b' c' for the respective streams U, V, W, qo. For the model itself the inertia

coefficients usually are written k_, k_, kc,/c. The direction cosines of h aro

L=l+m_ U, M l+m_ V N=l+mc W (29)
l+m qo = l+-----m qo' l+m..qo'

as appears on dividing (28) by (1 + m)qo, the resultant of(1 + ma) U, (1 + rn_) V, (1 + me) IV.

EQUIPOTENTIALS AND STREAMLINES

On a' b' c' tile plane sections _= constant are equipotential ellipses parallel to the major

section ¢ - O, and dwindling fore and aft to mere points, which.'we call stream poles, where the

plane (28) is tangent to a' b' c'. If _ is the angle between any_normal to a' b' c' and the polar

y

q,u'q._

iV
FIG. 2t.--Superposition of streamline velocities lor component plane flows parallel

to axes of elliptic cylinder

normal, whose direction cosines are L, M, N, we call the line _= coast, a line of stream latitude.

Thus _ is the colatitude or obliquity of a surface element of a' b' c'. The line _ = 90 ° is the stream

equator. This latter marks the contact of a tangent cylinder parallel to the polar normal, viz,

perpendicular to the plane (28), as in Figure 22. If l, m, n are the direction cosines of any normal
to a' b' c'

cos e = IL + m M+ aN. (30)

Since the streamlines all cut the equipotentials squarely, 3 the polar streamline must run

continuously normal to the family of confocal ellipsoids a' b' c'. Hence it forms the intersec-

tion of a pair of confocal hyperboloids, and at infinity asymptotes a line parallel to qo through the

origin. This straight line may be called the stream axis. Its equation is x: y: z = U : V : W.

J On the model, therefore, the streamlines are longitude lines, viz. orthogonals to the latitude lines.
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COMPONENT VELOCITIES

At any point of any confocal surface a' b' c' the streamline velocity q, perpendicular to the

equipotcntial elliFse there, has components qn, q, respectively, along the surface normal n

and the tangent s in the plane of q and n. By (28) we have

5_, dh
q'=Oh ds =_' sin _, (31)

where - b_/bh = (1 + m)q_q t= max. qt, is the equatorial velocity. By (26) the inward normal

velocity due to _ is

- :_ (1 + ma) Ux = - l(1 - n_) U, (32)

na being constant on a' b' c', as may be shown. Similarly, _b, _¢ contribute -m(1-nb)V,-n

(1-n¢) W; hence the whole normal component is

q,= -/(1-n,) U--m(1-nb)V-n(1-n,) W= q,, cos _, (33)

where if, = [(1 - n,) 2U 2 + (1 - n b)_V _+ (1 - n¢) 2 W 2] .5= max. q. is the normal velocity at the stream

poles. Some values of n., n_ are given in Tables I, III. One also may find (33) as the norm,l

derivative of (28).

We now state (28) : At any point of a' b' c' the velocity potential equals qth, the equatorial

speed times the distance from the plane of zero potential. Similarly (31) (33) state: At any

point of a' b' c' the tangential speed (qt sin _) equals the equatorial speed times the sine of the

ob|iquity; the normal speed (q. cos _) equals the polar speed times the cosine of the obliquity.

This theorem applies to all the confocals, even at the model where q_ = 0. _

Incidentally the nornlal flux through a' b' c' is f_, cos _.dS =_t_ fdS,, where S_ is the pro-

jection of S on the plane of _=const. and equals the cross section of the tangent cylinder.

The whole flux through a' b' c' is therefore zero, as should be.

POLAR STREAMLINE

Some of the foregoing relations are portrayed in Figure 22 for a case of plane/low. Note-

worthy is the polar streamline or hyperbola. Starting at infinity parallel to q0, the polar fila-

ment runs with waning speed normally through the front poles of the successive confocal sur-

faces; abuts on the model at its front pole, or stop point; spreads round to the rear pole; then

accelerates downstream symmetric with its upstream part. Its equation qt = 0 = 5¢/_s can be

written from (28)

qt = (l+m,) U sin O- (1+rob) V cos 0=0, or tan 0= ! +rob V*
1 + rn_ -U (34)

This asymptotes the stream axis y/x = V/U; for at infinity rn_, m6 = 0, and tan 0 = V/U. Plane-

flow values of m_, rnb are given in Tables I, III.

All the confocal poles are given by (34); those of the model are at the stops where

I+k_ V a _y (37)
tanO=i÷k_U= b2 x"

Thus on an elliptic cylinder they are where y/x=b_/a 3. V/U; on a thin lamina they are at

x = =t=c cos a, as given in the footnote. Tables II, IV give values of k_, kb.

An analogous theorem obtains also for any other uniform steady stream, say of heat or electricity, that has zero normal component at the bound -

ary ellipsoid and zero concentration in the flow field.

• To graph (34) we may use the known relations.

a t2 y a*
tan 6_b, _ :v-_ tan a, (35)

where tan a - V,' Uis the slope of qo or the aSymptote Io (34). Thus (34) becomes a']b'_ (l+m_)/(l+m.), which with the tabulated values of
m., rob, reduces to

x .... Y! - - x (_)
¢! cos I a c _ sin z a '

a. hyperbola whose semiazes are ¢ cos Q, c sin a, ¢ being the focal distance, l'n this treatment z=a' cos a, y_b _ sin a, a being a fixed eccentric

angle of the successive confoca_ elipses.
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Each angle of attack has its own flow pattern; each its polar streamline given by (34).

A close-graded family of confocal ellipses and hyperbolas therefore portrays all the poles and

polar streamlines in the plane ab for all angles of attack. The family can be written

x = a' cos a, y = b' sin a. (38)

Thus, giving a', b' a set of fixed values, then a a set, we have the confocal families

2 x2 y2
x+y_ =
a, 2 b, 2-1. c _cos 2a c 2sin sa 1. (39)

the first being ellipses, the second hyperbolas like (36) below.

Similarly, the locus q_ = 0, or q = qt, is written from (33). With W= O,

tan O= - 1-n_ U. (40)
1-na V

Its discussion is of minor interest.
DRAG AND MOMENT

Formulas for the pressure p all over the simple quadrics here treated are well known, for

oblique as well as axial flow, and serve to find the drag and moment. For uniform flow the

resultant drag is zero; its zonal parts can be found as heretofore. The moment about z is the

surface integral of p(y dy dz-x dx dz), and generally is net zero.

REGIONS OF EQUAL SPEED ABOUT OBLIQUE MODELS

Compounding the velocities (31), (33) at any point in the ab plane, as in Figure 22, gives

for q constant

q_=[(l+mo) UsinO-(l+mb)VcosO]_+[(1-n,)UcosO+(1-n_)VsinS]2=const. (41)

Ill particular for q2= U:+ V _ (41) gives

tan 0 = B (A ± _/BC+
a,2

A2)=b, _ tan/_. (42)

where K= V� U, and

A = (1 + m,) (1 + rob) - (1 - na) (1 - n _), B = ma(2 + rn_) - na (2 - n_)K 2, CD = n_(ZK-2n')_ - m_(2 + rob).

Y
q ._ ,ose

]/" t" "

[ -. . ,

i .a ;a'

FI_. 2"2,--Polar streamline and component velocities for uniform stream of inviscid liquid about oblique

elliptic cylinder

For an elliptic cylinder, as is well known.

b a+b b a+b • a a+b a a+b
m_=a, a,+b,' na=b,a,+b,' m_=b, a,÷b,, nb=a,a,+b,'

which determines A, B, C, and thence 3 in terms of a' b'. Thus, for an endless elliptic cylinder

of semiaxes a-4, b- 1, yawed 10 ° to the stream, i. e., V/U = tan 10 ° =.1763, the graph of (42)

has the form shown full line in Figure 23. This graph takes the dotted form when V= 0, _/o= U.
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For a prolate spheriod of semiaxes a=4, b=l, yawed 10% the graph of (42) is shown hi

Fimlre 17.

\, //

',, //

Fla. 23.--Lines of steady flow, lines of constant sDeed and pressure, for infinite frietionless liquid

streaming across endless elliptic cylinder, Dotted curve refers to stream parallel talc : fulldlna

curve q-qo refers to stream inclined tO ° to z

The two values of tan fl in (42) are

tan fit = K(A + _/BC+ A'), tan _, = K(A - _/BC+ A2), (43)

from which are readily derived

.... 2K_/BC+A_ 2 KA
tan _pl-o2;= B_K_ C , tan (3,+_2)=B+K_ (44)

(43) give the x-ward inclinations _,, _5, of the asymptotes of the curves q=qo. As can be

proved, the interasymptote angle _t-7 & remains constant as K(= V/U) varies and the asymp-

totes rotate through _(3_ + 3_) about the c axis.

Thus, with an elliptic cylinder, giving A, B, C their values at _ makes

K(a + b). (45)
tan (_ - fls) = _, tan (fl_ + 35) = -bZaK _ ,

hence the asymptotes continue rectangular, as in Figure 23, while with varying angle of attack

they rotate through _(3t + 35). Or more generally one may show that da (3,- 35) = 0.'. 3,- 35

const.

A similar treatment applies to the other figures of Table III. For all the cylinders the

interasymptote angle is 90°; for the spheroids it is 2tan-Z_/2=109°-28 ' in the ab plane.

Figure 17 is an example. If the flow past the spheroids is parallel to the bc plane the inter-

asymptote angle for the curves q=qo in that plane is obviously unaffected by stream direction.

It is 90 ° for infinitely elongated spheroids; 109°-28 ' for all others. Excluded from the gen-

eralizations of this paragraph are the infinitely thin figures, such as disks and rectangles edge-

wise to the stream, that cause no disturbance of the flow. Passing to three dimensions, we

note that the asymptotic lines form asymptotic cones having their vertex at the origin.

4248_%--27--35
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SUMMARY

For an infinite inviscid liquid streaming uniformly, in any direction, past an ellipsoid or

simple quadric :

1. The velocity potential at any confocal surface point equals the greatest tangential

speed along that surface times the distance from the point to the surface's zero-potential plane.

2. The tangential flow speed at said surface point equals the greatest tangential speed

times the sine of the obliquity, or inclination of the local surface element to the cquipotential
plane.

3. The normal speed at the point equals the greatest normal speed times the cosine of the

obliquity.

4. The locus of q=qo is a cup-shaped surface asymptoting a double cone with vertex at
the center.

5. The vertex angle of this cone is invariant with stream direction; for cylinders it is

90% .for spheroids it is 2tan -1 _/2 = 109 °- 28'.

6. The velocity and pressure distribution are closely the same as for air of the same

density, except in or near the region of disturbed flow.

7. The zonal drag is upstream on the fore half; downstream on the rear half; zero on the

whole. These zones may be bounded by the isobars, _ const.

For the same stream, but with kinematic viscosity v, if the dynamic scale is R=qod/v,
d being the model's diameter:

8. The drag coefficient of a sphere is 24/R for R_.2; 28R .s5+.48 for 0.2,_R_200,000;
and 0.5 for 104_R_105.

9. The drag coefficient of an endless round cylinder fixed across stream is 8r/R(2.002-

logeR) for R_.5; approximately 9.4 R-S+ 1.2 for 0.5,(R,(200,000; 1.2 for 10_R_200,000.

10. For 15,000_R_200,000 the drag coefficient of a round cylinder is 2.4 times that for

a sphere.
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TABLE III

Flow functions for simple quadrics in stream V along y positive

(For all shapes_b----(lq-mb) Vy, q,=(l+mb) V sin _* q.=--(l--n_) Vcos_)

........ i

Shape mb

Sphere

Circular cylinder

Elliptic cylinder

a 3

2a_S

a2

a_2

a a+b

b' a'+b'

Prolate spheroid log. 1 +e' 2e'
1 1--e' 1 --e '2

e= v'a-'--b 2 -lo_.i+e_ l_2e 2
a t_e 1--e -ze l_e2e 2

Oblate spheroid e'_l --e '2 --sin-le '

1/b__ a2 1+ e 2
e= b evl_e_-- sin-_e

• • is the angle between b' and _my nt)rm I to the confocal surface.

TABLE IV

a _

al3

a 2

at2

a a+b

a' a"4-b'

log, l+e' _,l--2e'_
l__e p-ze l_e,2

log, l&e 2e 1z2e_--
1--e l--e:

e¢I _-e r: _sin_le p

y l--e'2

l+c:
--sin-le

Inertia factors kb for qua'dric surfaces in sleady translation along axis b in Figure 20

EIonga- Ellip. cyl E--a/b Obl. spher. E=b/a

tion E ks= b kt---- e--E sin-'e
eE2(e_A - 1) E sin-le

1.00 1.00

1. 50 1.50

2. 00 2.00

2. 50 2. 50

3. 00 3. 00

4. 00 4. 00

5. 00 5. 00

@ 00 6. O0

7. 00 7. 00

8. 00 8. 00

9. 00 9. 00
I_ O0 10. 00

Prol. spher. E= a/b

log, l+e _ 2e
1 -- e l--e:

kb=--10-o_ I+e 2el--2e:
g' l--e-- l--e:

0. 500

621
7O2

763

8O3

86O

895

918

933
945

954

960

1. 000

0. 500

384

310

260

223

174

140

121

105
092

084

075

0

Tim numerical values in column 3 are given in Lamb's paper already cited; those in column 4 are given

substantially by Doctor Bateman, Report No. 163 National Advisory Committee for Aeronautics, 1923.
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